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1. SUMMARY OF ACTIVITY DURING CURRENT PERFORMANCE PERIOD

1.1 Validation of the Long-term NOAA-11 SBUV/2 Solar Irradiance Data Set

During this period of performance, 1 March 1997 - 31 August 1997, the NOAA- 11 SBUV/2 solar

spectral irradiance data set was validated using both internal and external assessments. Initial quality

checking revealed minor problems with the data (e.g. residual goniometric errors, that were manifest

as differences between the two scans acquired each day). The sources of these errors were

determined and the errors were corrected. Time series were constructed for selected wavelengths

and the solar irradiance changes measured by the instrument were compared to a Mg II proxy-based

model of short- and long-term solar irradiance variations. This analysis suggested that errors due

to residual, uncorrected long-term instrument drift have been reduced to less than 1-2% over the

entire 5.5 year NOAA-11 data record. Detailed statistical analysis was performed. This analysis,

which will be documented in a manuscript now in preparation, conclusively demonstrates the

evolution of solar rotation periodicity and strength during solar cycle 22.

1.2 Comparisons with Other Instruments

Comparisons between the NOAA-11 SBUV/2 solar irradiance data and data from the UARS

SOLSTICE (Versions 8 and 9) and UARS SUSIM (Versions 18 and 19) instruments were performed

during this performance period as part of the validation of the NOAA-11 data. These comparisons

demonstrate that the precision and long-term accuracy of the NOAA-t 1 SBUV/2 data equals that

of Version 19 SUSIM data set and exceeds that of the Version 9 SOLSTICE data set. This work will

be documented in a forthcoming manuscript.

1.3 NOAA-9 SBUV/2 Activities

We have continued a low-level effort of tracking the solai" data taken by the SBUV/2 instrument

onboard the NOAA-9 spacecraft. In May 1997 the performance of the instrument's grating drive

system degraded significantly, and the drive became stuck in the spectral scan mode on May 6.

Although the Spacecraft Operations Control Center (SOCC) was able to free the drive mechanism

(permitting the resumption of normal ozone measurements), all spectral scan operations (including

daily solar measurements) were discontinued. Dally solar Mg II measurements have continued and

solar measurements at the twelve ozone channels, previously acquired once a week, are now also

being taken dally.

Due to resource demands and scheduling conflicts at NOAA's SOCC, the NOAA-9 SBUV/2

instrument was taken out of active duty on 14 July 1997. No instrument-specific commands,

including commands necessary to continue the daily Mg II observations were to be sent, and only

approximately 1-2 orbits of nadir viewing data were being acquired each day. An international letter





writingcampaignwasmountedto demonstratethe importanceof theSBUV/2solarobservationsto
NOAA (thedataareusedby morethan65scientistsfrom atleastadozencountries).Wearehappy
to report that this effort wassuccessfuland that daily NOAA-9 SBUV/2 Mg II measurements
resumedon5August1997.This instrumentcontinuesto operateasof 1October1997,andhasnow
compiledanunprecedented12-yearrecordof solarUV spectralirradiancedata. Sensoragingrelated
increasesin thenoiselevelof theNOAA-9 SBUV/Mg II datawerenoted. However,comparisons
with concurrentMg II datafromtheSUSIMinstnunentindicatethattheNOAA-9 dataremainquite
usable. If furthersupportbecomesavailable,we hopeto apply thetechniqueswehavedeveloped
for correctinglong-terminstnunentsensitivitychangesto theNOAA-9 SBUV/2irradiancedataset.

1.4 Data Release

The NOAA-9 and NOAA-11 discrete Mg II data were released to the user community via an

anonymous ftp site. A notice in the June 1997 issue of SolarNews announced the availability of

these data. A data set containing 5 nm averages of the solar spectral irradiances measured by

SSBUV on each of its eight Space Shuttle missions was also made available to the use community

via this ftp site.

ftp ssbuv.gsfc.nasa.gov

login: anonymous

password: your E-mail address

cd pub/solar/sbuv2/noaa9

cd pub/solar/sbuv2/noaal 1

cd pub/solar/ssbuv

(for NOAA-9 data)

(for NOAA- 11 data)

(for SSBUV data)

1.5 Presentations and Publications

During this period of performance we have been working to finalize two papers that document the

core of this research effort - the creation of the NOAA-11 SBUV/2 spectral scan irmdiance data set

and validation and scientific analysis of these data. Those manuscripts are essentially complete and

will be submitted shortly.

A paper discussing extensive, initial comparisons of the NOAA-I 1 irradiances with the SOLSTICE

(Version 8) and the SUSIM (Version 18) data was presented at the Spring 1997 AGU Meeting in

Baltimore, MD. A copy of that paper is attached. Two papers discussing recent results were

submitted for presentation at the Fall 1997 AGU Meeting in San FranCisco, CA.

In response to referee's comments, a paper describing initial GOME solar irradiance analysis results,

presented at the SOLERS22 Workshop in Sunspot, NM in June 1996, was twice revised. This paper

was recently accepted for publication by Solar Physics. A preprint of this "in press" paper is





attached.This paper and two additional papers discussing analysis of SBUV/2 Mg II data (preprints

of those papers were included in the last Semi-annual Report) are scheduled for publication in the

January 1998 issue of Solar Physics.

Finally, in a closely related activity, Mr. DeLand participated in the 2 "d IAGA/ICMA workshop

"Solar Activity Effects on the Middle Atmosphere" in Prague, Czech Republic. During this trip,

which was supported under a separate contract, Mr. DeLand presented the paper "SSBUV and

NOAA-I 1 SBUV/2 Solar Variability Measurements". A copy of that presentation is attached. The

full paper is in preparation for submission to Studia Geophysica et Geodaetica.

Cebula, R. P., and M. T. DeLand, "Influence of Short-Term Solar Spectral UV Variability on the

Determination of Solar Cycle Minimum", EOS Trans. Amer. Geophys. Union, 78(17), Fall

Meet. Suppl., submitted, 1997.

DeLand, M. T., and R. P. Cebula, "Identification of Solar Cycle 23 minimum from Solar UV
Measurements: NOAA-9 and NOAA-11 SBUV/2, UARS SUSIM, and UARS SOLSTICE",

EOS Trans. Amer. Geophys. Union, 78(17), Fall Meet. Suppl., submitted, 1997.

DeLand, M. T., and R. P. Cebula, "SBUV/2 Long-Term Measurements of Solar Spectral

Variability", EOS Trans. Amer. Geophys. Union, 78(17), Spring Meet. Suppl., $58, 1997.

DeLand, M. T., R. P. Cebula, and E. Hilsenrath, "SSBUV and NOAA-11 SBUV/2 Solar Variability

Measurements," 2nd IAGA/ICMA workshop "Solar Activity Effects on the Middle

Atmosphere, Prague, Czech Republic, 18-22 August 1997.

Weber, M., J. P. Burrows, and R. P. Cebula, "GOME Solar UV/VIS Irradiance Measurements in

1995 and 1996 - First Results on Proxy Solar Activity Studies", Solar Physics, in press,

1997.

2. WORK PLANNED: 1 SEPTEMBER 1997 - 28 FEBRUARY 1998

During the next period of performance 1 September 1997 through 28 February 1998, the following

activities are planned:

The manuscript describing the creation of corrected NOAA-11 solar irradiance data set will be

finalized and submitted to the Journal of Geophysical Research.

We will complete the extensive statistical analysis of the NOAA-11 solar irradiance data. These

results will be compared to results from similar analyses of SOLSTICE and SUSIM data during the

period in which all three instruments were operating simultaneously (September 1991 - October

1994). A manuscript describing the complete results will be finalized and submitted to the Journal

of Geophysical Research.





A NOAA-11 SBUV/2 1 nm averaged solar irradiance data set will be created and archived on the

SSBUV workstation for anonymous ftp and Intemet access. A SBUV/2-SSBUV solar irradiance

Website will be created. The availability of these data and the existence of the Website will be

announced to the solar physics community via the SolarNews monthly newsletter and the American

Geophysical Union's SPA Section newsletter.

We will continue low level monitoring and analysis of the Mg II data from the NOAA-9 SBUV/2

instrument.





Influence of Short-Term Solar Spectral UV Variability on the

Determination of Solar Cycle Minimum

R P Cebula and M T DeLand (Hugh'e.s STX Corporation, Lanham,

MD 20706; tel. 301-794-5265; cebula@ssbuv.gsfc.nascLgov)

Determinhag the precise date for solar activity minimum on solar cycle

time scales requires an understanding of potential sources of variabil-

ity on shorter time scales. Direct use of daily measurements is subject
to the effects of both observational noise and rotational modulation.

Uncertainties of 0.5% or less are significant when evaluating a solar

cycle dynamic range of 8-9% - that observed for the 205 am irrad-

iance and the Mg II index. Simple smoothing functions such as

running averages are commonly used to minimize or remove the

effects of short-term variations. Statistical analysis shows that the Mg

H index's nom;.n_ 27--d',_, rotational modulation period varied between

26 and 29 days during Cycle 22, which can allow some variability to

remain after using a single-period (e.g. 27-day) smoothing function.

Solar variability on inten'nediate time scales (e.g. 50-250 days), which

has been observed previously in sunspot numbers, could also influence

the identification of solar minimum. We used periodogram analysis to

examine the NOAA-11 SBUV/2, UARS SUSIM (V19), and UAKS

SOLSTICE (V09) spectral irradiance and Mg II data sots, and found

no evidence of intermediate=term periodicities related to solar activity.

Occasional instances of periodogram power were not repeatable

between instruments in either period or spectral location, suggesting

that they may represent artifacts.

Our results suggest that the use of daily unsmoothed values to identify

solar cycle extrema in date and magnitude is problematic because of

the impact of rotational modulation and measurement noise, gunning

averages which smooth the data on rotational time scales provide

significant improvement, although the evolution of rotational activity

during a solar cycle suggests that averaging windows of 35 days or

more are most effective. We find no evidence for periodic behavior

on intermediate time scales (during Cycle 22) which would influence

the identification of solar minimum.
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Identification of Solar Cycle 23 Minimum from Solar UV

Measurements: NOAA-9 and NOAA-II SBUV/2, UARS SUSUM,
UARS SOLSTICE

M T DeLand and R P Cebula (Hughes STX Corporation, Lanham,

MD. 20706; tel. 301-794-5254; radeland@ccmad.szr.com)

During solar cycle 22, solar spectra/U'V data sets of' more than 5

years in length have been produced by four instruments. The NOAA-

9 and NOAA-1I SBUV/2 instruments acquired solar spectral data

from March 1985 to present and December 1988 to October 1994,

respectively. The UARS SUSIM VI9 irradiance data set covers

October 1991 to September 1996. The UARS SOLSTICE V9

irradiance data set covers October 1991 to December 1996.

The SUSIM V19 and SOLSTICE V9 irradiance data sets are now of

sufficient length to permit an assessment of the date at which solar

activity reached a minimum between cycles 22 and 23. The NOAA-

11 data set provides validation of the UARS data, but does not cover

the solar minimum period. Shortward of 290 nm, where solar cycle

variability is 2% or more, we find that the identification of solar

minimum depends significantly on the _ent and wavelength band

chosen. For example, the SUSIM data averaged over 240-250 nm

and smoothed with a 27-day running average have their minimum

value on 28 April 1996, while the average irradiance over 200-208 ram

(shortward of the AI edge) reaches a minimum on 26 April 1996.

Using these same wavelength bands, the SOLSTICE data give solar

minimum dates of 4 May and 29 December 1996 respectively. In each

case, there are many other dates whose absolute values are equal to

within a small measurement error, We use a solar activity model

based on the NOAA-11 Mg II index to show that medium and long-

term calibration changes play an important role in the determination

of solar minimum from irradiance data.

SUSIM, SOLSTICE, and NOAA-9 SBUV/2 also produce Mg II

index data, which are inherently less sensitive to calibration errors.

The NOAA-9 Mg II index data cover the minima of both Cycle 22

and 23, and indicate _0.5% difference between the absolute levels at

those times. The dates for the minimum of solar cycle 23 in 27--day

smoothed Mg II index data for NOAA-9, SUSIM, and SOLSTICE

are 12 April, 22 April, and 27 April 1996 respectively. These dates
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are more self-consistem than the irradiance data, although once again

there are many values within a few tenths of a percent of the minimum

value listed here. Because of the challenges associated with correcting

irradiance data to better than 1°/_ accuracy, we recommend the use of

proxy indexes for the identification of"solar cycle extreme dates.

September 3. ! 997 F:\USERS_IATT_PAPERSLa'GUF97A I.WP6





SBUV/2 Long-Term Measurements of Solar

Spectral Variability

Matthew T. DeLand, Richard P. Cebula

Hughes ST)( Corporation

Greenbelt, MD

presented at the 1997 Spring American Geophysical Union Meeting,

Baltimore, MD

30 May 1997

supported by NASA Grant NASW-4864



The NOAA-11 SBUV/2 spectral solar data have been corrected for long-term

instrument changes to produce a 5.5 year data record during solar cycle 22

(December 1988 - October 1994). Residual drifts in the data at long

wavelengths are _+1% or less. At 200-205 nm, where solar variations drive

stratospheric photochemistry, these data indicate long-term solar changes of

5-7% from the maximum of Cycle 22 in April 1991 through the end of the

NOAA-11 data record. Comparisons ofNOAA-11 data with UARS SUSIM

and SOLSTICE for the period October 1991 - October 1994, when all 3

instruments were operating simultaneously, show that the observed long-term

variations in 200-205 nm irradiance agree to within 2%. This result is

consistent with predictions from the Mg II proxy index.

The SBUV/2 instruments represent a valuable resource for long-term solar

UV activity studies because of their overlapping data records. In addiction to

the NOAA-11 data presented here, the NOAA-9 SBUV/2 instrument began

taking data in March 1985 and is still operating, providing a complete record

of Cycle 22 behavior from a single instrument. Three additional SBUV/2
instruments are scheduled to be launched between 1997 and 2003, which

should permit full coverage of solar cycle 23.



Daily measurements made over 160-405 nm wave-

length region from December 1988 to October 1994

On-board calibration system corrects for diffuser

reflectivity change oN$

Coincident observations with SSBUV flights used to

characterize long-term instrument throughput changes

as functions of time, wavelength

NOAA-11 irradiance data show long-term drift _ 1%

for )_ > 300 nm; This is consistent with expectation

of tittle/no solar activity, indicates accuracy of correc-

tions

Shorter wavelengths show regular rotational modula-

tion (up to 5-6% at 200-208 nm, 2-3% at 240-250 nm)

during maximum and decline of Cycle 22; Periods of

13-day variability in Fall 1991, late 1992 also present

NOAA-11 Solar Irradiance

Results



NOAA- 1 1 IRRADIANCE Data: 380-390 nm
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Plot of all data in 10 nm bands (81-day average)

shows A F < +1% [darker green] for _. > 270 nm,

more long-term change shortward of Mg edge at 210-

250 nm [lighter green], largest change below A1 edge

at )_ < 210 nm [yellow, orange]; End of Cycle 22

maximum in Spring 1992 visible at I. < 270 nm

p, Long-term changes at short wavelent, ths determined

from smoothed data are approximately 6% at 200-208

nm, 3-3.5% at 240-250 nm; How can we evaluate

instrument drift at these wavelengths ?
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Solar irradiance variations modeled using NOAA-11

Mg II index, scale factors; NOAA-11 Mg II agrees

with NOAA-9 Mg II, SUSIM Mg II to within 1%

during overlap periods

"Desolarized" NOAA-11 irradiance data has lon_-

term drift of +2% at 200-208 nm, < 1% at 240-250 n:.

If, If (Mg II + scale factor) result is correct for long-term

change, AFsolar ---(6-7)% at 200-208 nm,-(3-4)% at

240-250 nm during 1989-1994; Compare with Other

instruments for validation
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NOAA- 11 data overlap UARS solar instruments

(SUSIM, SOLSTICE) during Oct 1991 - Oct 1994;

Results shown here use SUSIM V 19 data, SOLSTICE

V8 data '

Long wavelengths ()_ > 300 nm) generally have A F <

_1%; Raw data at short wavelengths (3. < 260 nm)

show similar rotational activity, long-term decrease

Evaluate drift at short wavelengths by removing

predicted solar change from all data; Results good to

1-2% for selected bands; No indication of long-term

bias in Mg H-based solar change values

Comparisons with UARS
Irradiances
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Solar Irradiance Data at 32")-340 _m.
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Irradiance Data at 240-250 nm

PREDICTED SOLAR CHANGE Removed
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For full comparison, remove predicted solar change

from all 10 nm bands and plot together

NOAA-11 data mostly within _1% range, with

drift of +1-2% at )_ < 200 nm [light green]; These

data represent later part of NOAA-11 data record

SUSIM data fall in _1% range, except for early

dip at _, < 230 nm [yellow] and additional drift at
170-190 nm

SOLSTICE data good to --1% at 300-380, 220-

260 nm; Drifts of-2% or more present in 260-

300 nm region, particularly 290 nm [yellow];

Data for _. < 210 nm have positive drift, reaching

AF = 3-4% at 180-190 nm [blue]
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NOAA-11 solar spectral irradiance data [170-400 nm,

December 1988 - October 1994] have been processed
with full corrections based on SSBUV coincident data

Results have long-term accuracy of _+1% at most

wavelengths; Solar change from late 1989 (maximum

of Cycle 22) to October 1994 (close to minimum) _-

-(6-7)% at 200-208 nm,-(3-4)% at 240-250 nm

lb. Comparisons with coincident UARS data during
1991-1994 show that NOAA- 11 irradiance data have

comparable long-term accuracy, representation of
short-term variations

NOAA-11, NOAA-9 discrete Mg II index data and

Mg II scale factors now available at anonymous FTP

site [ssbuv.gsfc.nasa.gov]; NOAA-11 spectral irrad-
lance data will be available on-line in Summer

1997

CONCLUSIONS
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SBUV/2 Instrument Description

• Nadir-viewing double monochrornamr_ w_veknmgth range 160-405 nm,

resolution 1.1 rim; Measures _ radiance at 12 discrete

wavelengths between 252-340 nm f¢¢ _ derivation

Solar measurements made using diffuser plate; Daily measurements

are spectral scan (160-405 rim, AA = 0.15 nm), discrete Mg II (280

nm)

SBUV/2 Flight History

• NOA,4-9: Ozone and spectral solar data March 1985 - July 1997;

Currently acquiring Mg II data only

NG/4A-11: Ozon_ da_ E_-':nbe:" i988- Maw_ 1995, solar data

December 1988 - October 1994 (_ failure)

NOA,4-14: Ozone data February 1995 - present, _ solar alma

F_- August 1995

SSBUV Ilstrument

• Engineering model of SBUV/2 insmnne_ _ wilft transmission

for Shuttle operations; Designed te _ SBUV/2 data

using coincident measurements, rigorous _ program

• 8 flights made between October 1989- Jammy 1996; Three flights as

part of ATLAS payload
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Conclusions

SSBUV and NOAA-I I SBUV/2 have made accurate measurements

of long-term and short-term solar UV variability during solar cycle 22

_° ° Long-term variations measured by SSBUV are -7*/o at 205 nm, 3% at

250 nm less than 1% longward of 300 nm

P Short-term variations measured by NOAA-II are dominated by

rotational modulation, which varies in period between 26-29 days

during cycle; Episodes of 13--day periodicity also observed

No evidence for medium-term (502.50 days) periodicity in NOAA-I I

SBUV/2, UAKS SUSIM, UARS SOLSTICE at wavelengths with

short-term variability; Periods observed at long wavelengths not

repeatable between instruments, likely to be artifacts

SSBUV, SBUV/2 solar data avaiah, ie via anonymous FTP:

tip ssbuv.gsfc.nasa.gov

login anonymous

cd pub/solar/ssbuv

,'d nuh /so lar/s buv 2/noaa0 9

cd pub/so lar/s buv 2/noaa l I

SSBUV flight average irradiances

NOAA-9 discrete Mg II index

NOAA-11 discrete Mg II index, spectral

irradiances (soon)



GOME Solar UV/VIS Irradiance Measurements

between 1995 and 1997-

First Results on Proxy Solar Activity Studies _

MARK WEBER, JOHN P. BURROWS,

In.qtitute of Environmental Physics, University of Bremen, P.O. Box 33 04 40

D-28334 Bremen, Germany

AND

RICHARD P. CEBULA

Hughes STX Corporation, 4400 Forbes Boulevard,
Lanham, MD 20706, USA

Version: October 2, 1997

Submitted to Solar Physics

Received: December 9, 1996

Revised: August 25, 1997

Accepted: September 13, 1997

Manuscript Pages:

Tables: none

Figures: 6

26

1part of this paper was presented at the 17th Sac Peak Workshop at Sacramento Peak

National Solar Observatory, Sunspot, New Mexico, June 17-21, 1996



Proposed Running Head

GOME Solar Irradiance Measurements 1995-1997

Send Proofs to:

Dr. Mark Weber

Institute of Environmental Physics
University of Bremen (FB1)
P.O. Box 33 04 40

D-28334 Bremen, Germany
Tel. +49/421/218-2362
Fax +49/421/218-4555
E.Mail: weber@gome5.physik.uni-bremen.de

2



ABSTRACT. The Global Ozone Monitoring Experiment (GOME) is the first

of a series of European satellite instruments monitoring global ozone and other

relevant trace constituents in the UV/visible spectral range. On April 20, 1995,

the European Space Agency (ESA) launched the GOME from Kourou, French

Guyana, aboard the second European Remote Sensing satellite (ERS-2). In or-

der to obtain the geometric albedo from the backscattered terrestrial radiance

measurements, a solar irradiance measurement sequence in the spectral range

between 240nm and 790nm is carried out once every day. The GOME solar irra-

diance is recorded at a moderate spectral resolution (0.2-0.4nm), thus providing

an excellent opportunity to contribute to the long-term investigation of solar

flux variation associated with the ll-year solar activity cycle from space, which

started in 1978 with SBUV (Solar Backscatter UV Experiment) observations on

Nimbus-7 and covers solar cycles 21 and 22. This paper briefly describes the

GOME spectrometer and measurement mode which are relevant to the solar

viewing. Preliminary results from the solar irradiance measurements between

1995 and 1997 and comparisons to SSBUV-8 (Shuttle SBUV) in January 1996

are presented. Solar activity indices used as proxies for solar flux variation are

often used to find a correlation with observed variation in atmospheric quan-

tities, for instance, total ozone. Initial results from the GOME MgII (280nm)

and CaII K (393nm) solar activity index calculation are presented and discussed.

The coupling of solar irradiance variability to global change is a current source of

scientific and public concern. This study shows that GOME/ERS-2 (1995-2001)

and the next generation of European remote sensing instruments, SCIAMACHY

and GOME/METOP, have the potential to provide continuity in the measure-

ments of solar irradiance from space well into the next century•



INTRODUCTION

The Global Ozone Monitoring Experiment (GOME) is the first European pas-

sive remote sensing instrument operating in the ultraviolet, visible, and near

infrared wavelength regions whose primary objective is the determination of

the amounts and distributions of trace atmospheric constituents (Burrows et al.

1988a, 1993). The instrument was proposed as a precursor to the Scanning Imag-

ing Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) to

be launched on the ENVISAT-1 (lst Environmental Satellite) platform in 1999

(Burrows et al. 1988b). GOME is a small scale version of SCIAMACHY ob-

serving the atmosphere in nadir sounding only, and having only four spectral

channels as opposed to eight channels for SCIAMACHY. The GOME indus-

trial management was funded by the European Space Agency (ESA) and the

industrial consortium was led by Officine Gallileo. GOME and SCIAMACHY

will provide continuous backscattered radiance and solar irradiance data sets in

the UV/visible and near-infrared covering the period between 1995 and 2005

assuming an expected lifetime of five to six years for each instrument.

During the commissioning phase of GOME, which lasted from April 1995

until July 1996, a limited amount of data were processed at the Data Processing

and Archiving Facility at the DLR Oberpfaffenhofen (GOMEMANUAL, 1995).

The major objective during this phase was the validation of the radiometric

accuracy of the GOME solar irradiance and earthshine radiance observations

and the validation of trace gas and cloud data products. At the end of June

1996 nominal operation of the GOME processing chain, providing continuous

calibrated data products, commenced. Some of the early solar irradiances mea-

sured by COME are shown and compared to preliminary results from the eighth

SSBUV experiment in January 1996.
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Recent investigations link the 11-year solar cycle to the terrestrial climate

(Svensmark and Frijs-Christensen, 1997, see references therein) and variation in

total ozone (McCormack and Hood, 1996: Labitzke and van Loon, 1997; and

references therein). Solar cycle variation in zonal mean ozone as a function

of altitude and latitude have been investigated by Hood (1997) by correlating

SBUV and SBUV/2 height-resolved ozone data to the composite MgII index

provided by the same instruments (DeLand and Cebula, 1993). Statistical anal-

ysis of geopotential height and temperature variation in the lower stratosphere,

which show significant correlation to solar activity (Labitzke and van Loon, 1997)

strongly indicate that ozone variation in the lower stratosphere and possibly in

the upper troposphere are primarily driven by changes in atmospheric dynamics

linked to the solar cycle (Hood 1997, Labitzke and van Loon, 1996).

Jackman et al. (1996) included the solar cycle variation of the solar flux

in a 2D global chemical-transport model and showed that a significant fraction

of the fluctuation in the long-term global ozone trend can be related to solar

activity. However, two major stratospheric sulphate aerosol events, the volcanic

eruptions of E1 Chichon in 1982 and Mt. Pinatubo in 1991, both occurring near

solar maximum, also contribute to the apparent cyclic variation of the annually

averaged global ozone and is in phase with the solar forcing (Jackman et al.,

1996), since increases in stratospheric sulphate aerosols as well as declining solar

activity following solar maximum are associated with observed ozone decreases

beyond the anthropogenic trend. The space observations are currently limited

to the last two solar cycles, because continuous monitoring of global atmospheric

ozone and solar irradiance, starting with Nimbus-7 observations (TOMS, SBUV,

ACRIM) has been only available since 1978, which covers just two complete

solar cycles up to now. The stratospheric sulphate aerosol issue just mentioned

demonstrates the need to extend the solar and global atmospheric monitoring in

order to improve the statistics by additional solar cycle observations, which in
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turn will permit a better understanding of the coupling between solar activity

and global change. GOME was launched in 1995 during the solar minimum

following solar cycle 22. If as anticipated, GOME and SCIAMACHY are fully

operational, both instrument alone will provide complete coverage of the next

solar cycle 23.

The advantage of using proxy solar activity indicators rather than directly

measured solar flux variations is that they are less sensitive to long-term instru-

mental drifts and more easily available. One important goal of this paper is to

demonstrate the feasibility of deriving proxy solar activity indices from GOME's

daily solar irradiance measurements, which will complement and possibly extend

solar activity indices, particularly the MgII index, as derived from other satellite

instruments such as the SBUV/2 series (Solar Backscattered UV Experiment,

Cebula et al. 1988, 1992, 1997, DonneUy, 1991, DeLand and Cebula, 1993, 1997)

and the UARS (Upper Atmosphere Research Satellite) instruments, SUSIM (So-

lar UV Spectral Irradiance Monitor, Brueckner eta/., 1996, Floyd et al., 1997a)

and SOLSTICE (Solar Stellar Irradiance Comparison Experiment, de Toma et

al., 1997).

A preliminary MgII solar activity index and CaiI K emissivity index are

presented and shown to correlate well with SUSIM results, although the com-

parison is limited to a nine month period at solar minimum condition (July

1996-March 1997). The high quality of the GOME solar activity indices was

achieved only after adjusting the absolute radiometric calibration of the GOME

spectra to account for an observed etalon fringe pattern in the GOME spectra.

The etaloning is caused by a Fabry-Perot effect observed in a thin quartz layer

protecting the detector arrays, which rapidly changes its shape when turning

on the detector coolers following an accidential detector warm-up to an ambi-

ent temperature near the freezing point. On the other hand the GOME MgII

core-to-wing ratio, used as a solar activity indicator, proved to be rather insen-
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sitive to the observed UV degradation, the latter being a common problem of

UV measuring instruments in space. This paper concludes with some remarks

about GOME and its importance to future space missions for monitoring daily

solar flux variations.

INSTRUMENT DESIGN

The GOME instrument is a double monochromator which combines a pre-

disperser prism and a grating in each of the four channels as dispersing elements.

A schematic diagram of the GOME optical layout is shown in Fig. 1. The ir-

radiance and radiance spectra are recorded with four linear Reticon Si-diode

arrays with 1024 spectral elements each. Peltier elements attached to the diode

arrays and connected to passive deep space radiators cool the detectors to about

-40°C. Except for the scan mirror at the nadir view port, all spectrometer parts

are fixed and the spectra are recorded simultaneously from 240nm to 790nm.

The spectral resolution varies between 0.2nm (UV, Channel 1) and 0.4rim (VIS,

channel 4). Part of the light that reaches the pre-disperser prism is branched

out and recorded with three broadband polarization monitoring devices (PMD),

which approximately cover the spectral ranges of the detector arrays in channels

2 (300-400rim), 3 (400-600nm), and 4 (600-800nm), respectively. The PMDs

measure the amount of light at an instrument defined polarization angle.

A calibration unit adjacent to the spectrometer part consists of the sun

view port and a compartment housing a Pt/Ne/Cr hollow cathode discharge

lamp. The solar radiation is attenuated by a mesh (20% transmission) and

directed via a diffuser plate (wet-sanded A1 plate with Cr/Al coating) on to the

entrance slit of the spectrometer. When no solar measurements are carried out

and during nadir and calibration lamp measurements, a protective shutter is
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placed in front of the solar view port in order to avoid unnecessary UV exposure

and to prevent straylight from entering the instrument. The calibration unit

becomes optically coupled to the spectrometer by proper positioning of the scan

mirror. The various pointing geometries of GOME permit, in addition to solar

and earth nadir viewing, lunar observations (through the nadir view port with

scan mirror angle of about 85 deg.) at selected times during a year.

The processing of the GOME data, which includes the radiometric and

wavelength calibration of the spectral raw data, occurs at the German Remote

Sensing Data center (DFD) at DLR Oberpfaffenhofen. The on-ground calibra-

tion includes adjustment of the GOME irradiances and earthshine spectra to

account for leakage current, straylight, focal plane area noise (which is related

to the voltage controlling the Peltier coolers), and the pixel-to-pixel variability

(which is monitored using on-board LED measurements). The absolute radio-

metrically calibrated GOME spectra (solar irradiance and backscattered radi-

ances) are then referred to as Level-1 GOME data products. For further details

about the GOME Data Processor (GDP) the reader is referred to the GOME

Users Manual (GOMEMANUAL, 1995).

SOLAR IRRADIANCE MEASUREMENTS

The ERS-2 satellite moves in a retrograde, sun-synchronous, near polar orbit

at a height of about 785 km. Once a day (every fourteenth orbit) GOME solar

irradiance measurements are carried out when the ERS-2 satellite crosses the

terminator in the north polar region coming from the night side. Since GOME

is not equipped to actively track the sun, viewing of the full solar disc is only

possible for a time span of about 50 sec. Integration times are 0.75 sec for all

channels, except for the UV channel, where the integration time is doubled. A
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mean solar spectrum is constructed from the series of measurements during the

solar viewing period. Once a month, the internal hollow cathode calibration

lamp is switched on over an entire orbit. During this sequence, a series of

lamp measurements with and without the solar diffuser permits the investigation

of long-term degradation of the sun diffuser and an update in the wavelength

calibration of the spectrometer, respectively. During the GOME commissioning

phase, no significant "long-term drift in the wavelength calibration was observed.

Prior to launch, the spectral irradiance of the GOME flight model was

calibrated by the Dutch firm TPD using a 1000 Watt FEL lamp, which in turn

was referenced to an absolute standard at NIST. The absolute accuracy of the

NIST standard is quoted to be 1 to 3% in the range 250-340nm (Walker et

al., 1987). The total calibration error at the shortest GOME wavelength at

240nm is estimated at 4.5% (3a), where the major contribution comes from the

preflight calibration measurements using the 1000W FEL lamp (3.8%) and the

determination of the bi-directional scattering distribution function (BSDF) of

the diffuser plate (2.2%).

A calibrated mean solar spectrum measured by GOME on July 22, 1995,

is shown in Fig. 2. A qualitative comparison of solar irradiance measurements

in the GOME channel 2 with preliminary results from the eighth shuttle SBUV

experiment in January 1996 is shown in Fig. 3. The GOME spectrum has been

convolved with a 1.1nm FWHM (full width half maximum) triangular function,

which best approximates the SSBUV slit function. The most significant feature

in the GOME/SSBUV ratio is an etalon structure, with fringe maxima separated

by about 13 nm. Similar features are observed in the other channels. Calcula-

tions show that the protective 3#m SiO2 layer covering the light sensitive area

of each detector array is responsible for creating the Fabry-Perot pattern. This

was already known from the pre-flight calibration and characterization program.

Apart from the etalon pattern, the agreement between SSBUV and GOME in
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the wavelength range 312-400nm (GOME channel 2) is on average better than

2%, which is within the maximum calibration uncertainty of 4.5% at 240am

and 3.2% between 300 and 400nm estimated for GOME (GOMECAL, 1994). It

should be noted here, that the SSBUV instrument exhibited excellent agreement

with other satellite and shuttle-based measurements (Cebula et al., 1996, Woods

et al., 1996).

In the first few days after the Peltier elements are switched off and on, the

fringe patterns change rapidly, with irradiance deviations up to 4% (Eisinger et

al., 1996) between consecutive days. Within a week, the etalon fringes stabilize.

During the warm-up phase, the detector may reach the ambient temperature of

the focal plane area, which is near 0°C. The cooling of the detector following the

warm-up is speculated to produce a thin ice layer on top of the SiO2 layer. The

solar irradiance ratios show that the periodicity of the fringe pattern remains

constant, which is expected if one assumes that condensed ice makes up only

a fraction of the quartz layer size and that the etalon period is determined by

the quartz thickness. However, solar ratios taken before and after such cooler

switching events indicate fringe amplitude changes of several percent. A possi-

ble explanation is that the thin condensing layer may act as a reflection coating

altering the optical efficiency of the quartz etalon. Without correcting for the

shifting etalon, the solar activity index time series derived from the spectral irra-

diance in the core of a Fraunhofer line, such as MgII (280nm) or the CaII k and

h lines (393-396nm), experience sharp discontinuities after the cooler switching.

As shown in the next section, the application of an etalon correction scheme

successfully removes the discontinuities.

From the comparison of calibrated GOME UV spectra with the mean

SSBUV-8 irradiance, a spectral degradation related to extended exposure of

the optical components in the spectrometer to the harmful UV radiation was

observed. A monotonic decrease in the GOME UV irradiances has been observed
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in GOME channel 1 (240-315nm) since the beginning of July 1995. In January

1996, the GOME irradiances at 240nm had decreased by 20%, at 245 nm by 15%,

and at 273nm by 8%. The diffuser reflectivity measurements have not revealed

a systematic degradation trend since launch. However, the precision of using

the diffuser reflectivity measurements up to June 1997 is limited to 20% in the

UV channel (channel 1: 240-315nm) and better than 5% in GOME channels 2-4

(315-795nm). The UV degradation was also observed in the lunar spectra, which

are recorded from light entering the nadir view port (Dobber, 1997). This means

that the loss in optical efficiency is primarily occurring in the spectrometer part

(see Fig. 1) and, since the nadir scan mirror is the most exposed spectrometer

optical element, it is likely that this mirror is mostly affected.

The in-flight calibration measurements, i.e. relative intensities of reference

lines recorded with the internal Pt/Cr/Ne calibration lamp, which is primarily

used as a wavelength standard, and the lunar observations have not yet been

used to correct for instrument degradation with time. A first in-flight calibra-

tion based upon intensity ratios derived from the lamp line measurements, which

were referenced to pre-flight lamp measurements, was carried out in the begin-

ning of the commissioning phase (Hoekstra et al. 1996), but no further update

has occurred since July 2, 1995. For the investigation of the proxy solar activity

based upon individual Fraunhofer lines, a simple recalibration of the UV channel

spectra (240-400nm) to account for UV degradation has been applied by refer-

encing the GOME irradiance to the SSBUV-8 measurements in January 1996,

as will be described in the next section.

GOME PROXY SOLAR ACTIVITY INDICES
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The original definition of the core-to-wing ratio which was coined the MgII index

uses a total of seven wavelength positions about the MgII absorption near 280nm.

This definition was first successfully applied to SBUV/Nimbus-7 data by Heath

and Schlesinger (1986). Because of the enhanced spectral resolution of GOME in

the UV Channel (AA = 0.17nm) as compared to the SBUV series (AA _ 1.1nm)

the GOME MgII index is here calculated using 10 spectral values as explained in

Fig. 4. During solar maximum of the ll-year solar cycle, the number of sunspots

increases. Associated with the dark photospheric sunspots are chromospheric

plages, which are hotter than the surrounding areas and are responsible for

the chromospheric emission observed in the core of Fraunhofer absorption lines.

The formation of the wing of the Fraunhofer lines originates in the photosphere,

where the variation with the solar cycle is known to be small. Although the

MgII doublet is not spectrally resolved in the GOME spectra, the chromospheric

emission peak is recognizable at the position of each peak of the doublet (see

Fig. 4). The corresponding residuals of the series of measurements between

end of June 1996 and end of March 1997 relative to the solar irradiance from

January 14, 1997, as depicted in the bottom of Fig. 4 highlights the variability

of the chromospheric emission. The short-term variability of the chromospheric

emission is mainly linked to the 27-day rotation of the sun, which moves active

regions in and out the field-of-view of the instrument.

A continuous set of calibrated GOME spectra is available since the end of

June 1996 and a corrected time series of the GOME MgII core-to-wing ratio for

the time period June 28, 1996, to March 31, 1997 is shown in Fig. 5. In the case

of the CaII K and H doublet the definition of the transmission background is far

more difficult due to the high density of Fraunhofer lines in the spectral region

around 390-400nm. For this reason, the CaII K peak irradiance rather than the

core-to-wing ratio is displayed as a time series in Fig. 6. In the same figure the

peak irradiances of the individual peaks of the MgII doublet are also shown.
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Unlike the MgII doublet, the chromospheric emission in the absorption core of

CaII Fraunhofer line can not be seen in the spectrum itself_ however, a small

variation in the peak irradiance is _'isible in the time series. The modulation

of the CaII peak irradiance is a factor of four smaller than the corresponding

modulation of the MgII core-to-wing ratio.

As discussed earlier, the GOME solar irradiance values in channel 1 (240-

315nm) and channel 2 (312-405nm) have been corrected for the etaloning and

UV degradation before deriving the MgII core-to-wing ratio and the CaII k peak

transmission. A correction to the solar irradiances have been determined by

ratioing the GOME measurement to the SSBUV-8 solar irradiance. Both GOME

and the mean SSBUV-8 solar spectrum were spline interpolated to a common

wavelength grid in steps of 0.1rim and then convolved with a 10nm boxcar, i.e.

smoothed, before taking the irradiance ratios. Since the degradation increases

monotonically with decreasing wavelength, a third order polynomial generally

sufficed to fit a correction curve to the solar ratios, which is then applied to

correct the degradation observed in the GOME data.

In the nine month period (July 1996-March 1997), for which proxy solar

activity index time series were analyzed, a total of five GOME detector cooler

switchings were reported. On two occasions the cooler switching also lead to a

warm-up of the detectors near the freezing point (October 29, 1996, and January

14, 1997). Associated with the cooler switching are observed discontinuities in

the solar activity indices, which can be on the same order or higher than the

modulation observed in the time series. A correction to the shifting etalon

patterns was therefore applied by fitting a high order polynomial through the

solar irradiance ratios covering about two etalon fringes in the wavelength region

274-287nm. A small window at the core of the MgII doublet (279.5-280.5nm)

was excluded from the fit. Similarly, a spectral window between 385nm and

403nm, excluding two 2nm sub-windows centered at the two peaks of the CaII
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doublet, were selected in channel 2. The GOME solar ratios were referenced to

a GOME spectrum, recorded four hours after a detector switching on January

14, 1997, and which most closely resembled warm detector spectra.

DISCUSSION

The selection of the MgII index and CaII K absorption as surrogates for solar

activity variation is not unique. Among the many Fraunhofer lines available

in the GOME spectral range, the two candidates here proposed are among the

strongest absorption features and are easily observable by GOME at its spectral

resolution. Since an operational in-flight calibration routine has not yet been

included in the GOME Data Processor, a correction scheme to account for long-

term UV degradation effects and the etalon patterns, observed in the GOME

channels 1 (240-310nm) and 2 (310-405nm), was implemented. Comparison of

the GOME MgII index with the SUSIM MgII index V19r2 (Floyd et al., 1997,

Floyd, 1997, see Fig. 5) enables the correction scheme introduced here to be

validated.

In Fig. 5 the SUSIM V19r2 index has been scaled by linear regression to

the value range of the GOME MgII index. The linear regression equation was

determined to be y - -0.1107(92) + 1.238(35)_c, where the digits in brackets are

the uncertainties in the regression coefficients, x, the SUSIM MgII V19r2 index

value, and y, the scaled SUSIM index value as plotted in Fig. 5. From the linear

regression a correlation coefficient of r -- 0.93 between the GOME and SUSIM

time series was found. At first sight one might consider the correlation to be

somewhat low as correlations between SBUV/2, SUSIM: and SOLSTICE time

series tend to be on the order of 0.97 or better (de Toma et al., 1997). However,

all comparisons were based on data stretching from solar maximum (launch of
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UARS in fall 1991) to solar minimum (end of 1995), where the index values

have their largest spread. Thus far the GOME time series has been limited to a

period during the solar minimum phase between solar cycles 22 and 23. The high

correlation between the GOME and SUSIM MgII indices during solar minimum

condition proves that the radiometric calibration correction accounting for UV

degradation and the shifting etalon pattern works well.

The absolute activity index values and peak irradiances as derived from

two instruments generally differ considerably due to differences in the instru-

mental slit functions and the associated spectral resolution. High correlation

between proxy solar activity indices derived from different instruments are im-

portant in order to properly transform different series into each other in order

to obtain a time series extending beyond the lifetime of a single instrument.

As expected, the MgII solar activity index appears to be rather insensitive

to the UV degradation, because the chromospheric emission peak was normalized

to the slowly varying photospheric background in the wing region. However, the

core-to-wing ratio is found to be very sensitive to the rapid changes in solar irra-

diances resulting from the etalon fringes shifting after detector cooler switchings.

Removal of this effects provides an excellent MgII index from GOME.

CONCLUSION

In the first two years of GOME operation, it has been demonstrated that GOME

can provide continuity in long term solar irradiance monitoring from space which

was started in the late 1970s. Combining the SBUV and SBUV/2 series (1978-

present), the UARS SOLSTICE and SUSIM data (1991-present) and the Euro-

pean series of GOME and SCIAMACHY, long term space monitoring of solar

spectral irradiance and its variability during three complete solar cycles, cycles
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21, 22, and the upcoming cycle 23, is required to investigate the links between

the natural variability of the solar output and global atmospheric processes. The

latter may significantly contribute to the global change issue. If a proper correc-

tion to the GOME solar irradiance to account for UV degradation in the short

wavelength region and the etalon effect is applied, GOME may provide accurate

absolute solar irradiances in the UV/visible with an overall calibration uncer-

tainty of 5% and better and with a repeatability of less than 1% on a day-to-day

basis. One should also note that GOME is currently the only satellite instrument

regularly measuring solar irradiance in the wavelength region beyond 400nm.

A tandem operation of GOME/ERS-2 and SCIAMACHY, an extended

GOME version, is planned to provide cross-validation for SCIAMACHY dur-

ing the first year of SCIAMACHY operation after launch of ESA'S ENVISAT

platform in 1999. A second generation GOME instrument is scheduled to fly

on METOP, an European operational meteorological satellite being planned by

ESA and EUMETSAT. METOP is the European successor to the NOAA/TIROS

platform and is planned for launch in 2002. Two SBUV/2 instruments on NOAA-

9 and NOAA-14, which are still operational, may provide coverage until 2005.

Three new SBUV/2 instruments are planned to fly on three successive mis-

sions, NOAA-L, -M, and -N, to be launched two years apart each starting in

1999. SOLSTICE and SUSIM launched in 1991 are still operating and may con-

tinue measurements until the turn of the ceiatury. A second generation of the

SOLSTICE instrument (SOLSTICE II) was originally scheduled in the NASA's

EOS-CHEM series, of which the first platform is to be launched in 2002, but

has been postponed in the NASA's Mission to Planet Earth restructuring in

1995, unfortunately. Alternative flight opportunities for SOLSTICE II are un-

der consideration. At the moment, the follow-up missions of GOME/ERS-2,

SCIAMACHY and GOME/METOP, are likely to be the only new instruments

providing daily UV solar flux measurements in the near future.
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Figure Captions

Figure 1. Schematic Instrumental Setup of GOME. The GOME instrument is

a four channel spectrometer. Attached to the spectrometer is a calibration unit

housing a Pt/Cr/Ne hollow cathode discharge lamp and the fore optics for solar

viewing. Not shown is an additional mirror which directs the lamp light to the

solar diffuser plate for diffuser reflectivity monitoring.

Figure 2. GOME Solar Spectrum from July 22, 1995. Principal solar absorption

features, including the MgII doublet (289nm) and the CaII K line (394nm), are

identified. Asterisks mark instrumental artifacts due to the changing transmis-

sion characteristics of the anti-reflection coating on the channel 3 beam splitter

(450nm) and due to a Wood anomaly in the Channel 4 holographic grating

(700nm). The overlap regions between the four optical GOME channels are at

315nm, 405nm, and 600nm.

Figure 3. Comparison of the SSBUV-8 and GOME irradiance values (Burrows

et al. 1997).

Figure 4. The MglI doublet at 280nm as observed by GOME. All 221 spectra

used in the time series analysis (June 28. 1996-March 31, 1997) have been plotted

on top of each other. The chromospheric emission in the core region of the MgII

doublet is indicated by three adjacent solid points for each peak. The bottom

curve shows the residuals of each of the daily solar spectra relative to the GOME

spectrum recorded on January 14, 1997, multiplied by a factor of ten. The

variability of the chromospheric emission can be easily recognized in the residual

plot. Six wavelengths in the core region of the MgII doublet are averaged to

obtain the core value of the MgII index. Four points in the wing, which are
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the maxima of parabolas fitted in the windows, 275.8-276.3nm, 276.3-276.8nm.

283.9-283.3nm, and 283.7-284.1nm, are used to calculate the wing value. The

mean of the four wing values is indicated by the dashed line. The solar activity

index is given by the ratio of the mean core values over the mean wing values.

The GOME absolute solar irradiance have been corrected for UV degradation

with time and the observed etalon effect.

Figure 5. GOME MglI Index Times Series from June 28, I996 until March 31,

1997. The points are the daily GOME index values as defined in Fig. 4 and the

solid line is the SUSIM V19r2 MgII index, which has been scaled to the GOME

index value range by linear regression (see text). From the linear regression a

correlation coefficient of r -- 0.924 between the two time series was determined.

Figure 6. Daily peak irradiance value of CalI K at 393.5nm (top panel) and

MgII at 279.5nm (middle) and at 280.5nrn (bottom) during the period June

28, 1996-March 31, i997. From the MgII peak irradiances the MgII proxy

solar activity index (see Figure 4 and 5) were derived. The modulation of the

peak irradiances of all three solar Fraunhofer lines are related to chromospheric

emission originating from plage areas moving in and out the field of view of the

instrument in the course of the 28-day rotation of the sun.
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